The Olin Experiment – IEEE Spectrum

0
257

IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.
img Photo: Leah Fasten
His arms up in the air, Benjamin Linder shakes his hips with the rhythm of a hula dancer. He’s trying to show me how a robotic gizmo, built by his students, nimbly climbs glass walls. Linder, who is trim and bespectacled, with dark hair and a perpetual five o’clock shadow, launches into a spiel on gecko anatomy. But then he interrupts himself: “Another team couldn’t decide if they wanted to do a leopard or a raccoon, and so they settled on a leopraccoon,” he says with a grin, adding. “This machine literally gallops up the wall. Cool, huh?”
Just past 4 p.m. on this crisp fall day, first-year students begin arriving for Linder’s Design Nature class. A bunch of them congregates around a tray of brownies that the professor baked. A few others sprawl on a gray couch in the middle of the room. A couple of students execute some swing dance moves nearby.
The place looks like a hybrid of dot-com office and arts classroom. Bright collages with diagrams and equations fill the white walls, and piles of paper, markers, Lego blocks, tools, laptops, and iPods clutter six big wooden tables. After a student with a thick shock of dark curly hair arrives clad in a blue-and-black striped bathrobe—he is the course’s teaching assistant—Linder calls out to the crowd that the class is going to begin.
It’s just another day at the Franklin W. Olin College of Engineering, in Needham, Mass. Founded with more than US $460 million from the F.W. Olin Foundation, the school, which will graduate its first class at the end of this month, was conceived as perhaps the most ambitious experiment in engineering education in the past several decades. Olin’s aim is to flip over the traditional “theory first, practice later” model and make students plunge into hands-on engineering projects starting on day one. Instead of theory-heavy lectures, segregated disciplines, and individual efforts, Olin champions design exercises, interdisciplinary studies, and teamwork.
And if the curriculum is innovative, the school itself is hardly a traditional place: it doesn’t have separate academic departments, professors don’t get tenured, and students don’t pay tuition—every one of them gets a $130 000 scholarship for the four years of study.
Olin’s radically new way of training engineers incorporates changes that many in industry and academia say are long overdue. “The urgency of reform of engineering education has been heightened in the last two or three years as we’ve slowly begun to recognize that we really are competing on a global playing field,” says William A. Wulf, president of the National Academy of Engineering, in Washington, D.C., and a member of a council that advises Olin’s president.
Experts like Wulf say that if the United States wants to stay at the forefront of technological innovation, it needs to increase the quality and quantity of its engineering workforce. The problem is that enrollment is stagnant, dropout rates are huge, and women and minorities are still disappointingly underrepresented. “Engineering is fun, engineering is creative,” he says, “but we have this kind of boot-camp model of engineering education: if you manage to get through the first two years, then we’ll let you do some engineering.”
Wulf isn’t ready to proclaim Olin a success. “It’s an experiment; we’ll see what will happen,” is all he’ll say for the record. But he adds that Olin’s faculty is “asking all the right questions, and they have the advantage of starting with a clean slate.”
At this month’s commencement, the 75 students who entered the school’s first class in the fall of 2002 will receive bachelor’s degrees in electrical and computer engineering, mechanical engineering, and general engineering—the three degree types Olin offers. As the seniors toss their mortarboards in the air and take their next steps in the corporate world, graduate programs, and other organizations, many observers on and off campus will be following their progress. How will Olin’s engineers compare with traditional ones? Will other schools follow the Olin way?
To see the Olin experiment firsthand, I made three trips to the school during a nine-month period in 2005 and early 2006, spending time with dozens of professors, administrators, and students, and sitting in on classes and lab sessions. As a frame of reference, I used what I’ve seen at some of the foremost centers of higher education, such as MIT, UC Berkeley, Princeton, Purdue, and Columbia, to name a few. It hardly prepared me for what I found at Olin. Whatever the outcome of the experiment, one thing is certain: this is an engineering school like no other.

Olin’s small campus perches atop a hill in a forested area amid the affluent suburbs of Needham and Wellesley, a half-hour drive west of Boston. The school’s largest building, with all its classrooms and laboratories, is the Academic Center, a four-story structure curved around an oval lawn, a long row of tall columns running along its glass facade. Across the oval two other curvy buildings house administration and faculty offices, the library, an auditorium, student activities rooms, and the dining hall. The buildings, with their beige brick walls and white interiors with wooden, glass, and stainless-steel details, have a sleek, quasi-antiseptic feel—a stark contrast to many Boston-area campuses and their centuries-old, ivy-covered red brick.
But the differences between those traditional schools and Olin really become clear when you step into a class like Linder’s Design Nature. The course exemplifies one of the key beliefs underlying Olin’s philosophy: design—the process of transforming an idea into a useful thing—is the core of what engineers do.
Linder, who studied product design at MIT before becoming a mechanical engineering professor at Olin, tells me that his course is a “bio-inspired introduction to design.” The class includes two projects during the semester. The first is a mechanical hopper. Students consider click beetles, springtails, spittlebugs, and fleas. They study how the insects propel themselves, and they use that knowledge to design their own hoppers, he explains. “Did I show you the damage one did to the ceiling?”
The second project, more challenging, is the glass wall climber, which the students make out of plastic pieces, electric motors, pneumatic actuators, and suction cups. To fabricate the parts they need, they use Olin’s two machine shops, which have a plastic thermoformer, a laser cutter, and other tools that they are certified as freshmen to operate. And to evaluate the climbers’ traits—a gecko’s gait, for example—the students hold an entertaining demonstration. “Lots of stuff in engineering are done without a whole bunch of science. These students are quite capable of a lot of stuff now, and we don’t need to deny that.”
In most traditional schools, students sit through separate calculus, physics, and chemistry lectures during the first two years and have only a few canned-type laboratories. Olin doesn’t eliminate each and every “chalk and talk” lecture; some professors do teach that way. But Olin’s curriculum, unlike conventional ones, tightly integrates the basic disciplines with practical projects.
To see how this interdisciplinary approach works, I head out to a Math/Physics class, which, like the Design Nature class, meets in a studio setting. The instructors are electrical engineering professor Mark Somerville and math professor John Geddes. They tell me that days earlier the students attended lecture-style classes on topics such as differential equations and kinematics of rigid bodies. Today the students are being assigned a four-week-long final project: conceiving a mechanical system that incorporates those topics and then modeling, simulating, and building it. The goal is that they understand important engineering concepts like feedback and control, as well as learn how to work in teams, communicate, and manage schedules.
“Today the main deliverable is the proposal for the final project,” announces Somerville, who is tall and thin and considered dropping out of graduate school to become a chef. “We’re expecting you to devote some serious time on this.” Geddes, who has spiky reddish-blond hair and an earring, moves with Somerville from group to group, asking students somewhat Socratically about their project ideas and why they made the choices they did.
One group wants to build a model of a satellite orbiting a planet; another envisions an off-balance Ferris wheel that is heavier in one segment; a third group dreams up a pendulum with a ball at its tip that rolls as it swings. At one table, freshmen Andrea Striz and Sylvia Schwartz work on an ambitious idea, but they swear me to secrecy. “We want to patent it later on, so it’s better if you don’t mention it,” Striz says. I ask if I can use the title of their project, but they are still very concerned about their intellectual property. “You can say it’s music related,” Schwartz says, adding that she plays the violin and Striz plays the trumpet. “We’re trying to combine our passions with our classes.”
When the first students arrived at Olin in the fall of 2001, the campus wasn’t much more than some temporary prefabricated buildings near a soccer field. The school called them the Modular Academic Center. The students called them trailers. “For the first couple of months we had to attend classes there, and a sign said, ‘Hard Hats Required in This Area,’” says Michael Curtis, a senior from Iowa. “That’s an image that has always been associated with Olin in my mind.”
That first group, of 30 students, was there in a special prefreshman year to help Olin put together its curriculum, agreeing to spend five years rather than the usual four. “So we showed up, and we were just sort of, ‘Okay, we’re going to make this college,’” recalls Leighton Ige, a senior from Honolulu. Curtis and Ige say they were involved in all sorts of decisions, including what furniture would be in the dormitory and what the student government board would be like. Students’ feedback on how the school should work continues to be an integral part of Olin.
At the same time, the first buildings were going up, and the campus began to take shape. Money wasn’t a problem. The school’s endowment was one of the largest outlays in U.S. higher education. The benefactor, the F.W. Olin Foundation, was established by Franklin Walter Olin (1860-1951), a Cornell University-educated civil engineer and entrepreneur, who went on to found a metals, chemicals, and ammunition company that evolved into today’s Olin Corp., in Clayton, Mo., which last year had sales of $2.4 billion.
The foundation became known for awarding hundreds of millions of dollars for the construction of buildings on dozens of college campuses. But over the years, its board members began to nurture a more ambitious idea. They thought about funding not just a building but an entire school, one that would address a key problem in higher education: the way engineers were being trained. In 1997, the foundation announced it was committing all its assets to the building of a model engineering school that would emphasize entrepreneurship, interdisciplinary learning, and communications skills, hoping to inspire changes at other schools.
Employee No. 1 was Richard K. Miller, dean of the college of engineering at the University of Iowa, who was hired as president in early 1999. At a breakfast meeting in Olin’s dining hall, Miller explains the philosophy behind what he calls the “do and then learn” approach. “Students start out with an audacious project, which would in many institutions be heretical, except we do that deliberately,” the amiable 56-year-old executive says. “Because, after all, when you get hired in a corporation, that’s the first thing that happens to you: they give you a challenge for which you’ve not had the prerequisites. It’s all about learning how to learn. So we do that here from day one.”
Miller, who paid his own college expenses by playing keyboards in a rock group called the Saint James Infirmary Band that once opened for Janis Joplin, says the original 30 students were put through intense “hypothesis testing.” The first idea the president and the initial faculty tested cut to the heart of the traditional “learn and then do” method. They wanted to determine whether students have to sit through a barrage of fundamental courses before designing and building anything at all. They divided the students into small groups and assigned them a task: they had eight weeks to design, build, and demonstrate a pulse oximeter, a medical instrument clipped onto a patient’s finger to electronically measure pulse rate and blood oxygen level.
The professors showed the groups a commercial unit and referred them to relevant patents and other technical documentation in a step-by-step guided design. The faculty’s plan was to watch carefully as the groups progressed and discover where and why they failed. “The problem is, they didn’t fail,” Miller says. “They got it to work. This wasn’t the highest-quality fabrication in the world; it was a very crude-looking circuit board with a lot of transistors. But it worked. And we said, ‘Aha! There’s something to this. You don’t need to have prerequisites.’”
Even more revealing, he adds, was the effect the exercise had on the students. “They now wanted to know what a transistor is—badly. They now had a sincere, deep, personal motivation to learn electromagnetic theory and circuit design. These kids will never forget the experience they had in that project.”
During the following semester, the faculty conducted similar group experiments. They also visited more than 30 colleges and universities, met with officials from companies such as Hewlett-Packard and IBM, and pored through reports and other data on engineering education. From that exhaustive study, the curriculum began to emerge.
But the enthusiasm of faculty and students during those days sometimes proved difficult to manage, recalls Provost David V. Kerns Jr. With all wanting to pitch in, drafting the first curriculum became tangled in seemingly endless discussions. Kerns’s solution? He locked away a group of five teachers and one student in a retreat at the Endicott House conference center, an MIT-owned mansion in Dedham, not far from Olin, and told that group not to come back until it had a rough draft of the curriculum.
Much to Kerns’s surprise, the group, after three days of secret deliberations, came back with a document entitled “Once Upon a College.” It was a curriculum proposal written as a play, with five acts, dialogues, and epilogue. “It was very cleverly presented,” Kerns recalls. “It was an excellent starting point.”
Olin’s curriculum has been evolving ever since. In its basic components, it looks like that of any other school, with prerequisites, electives, and so forth. What makes it unique is the number of design projects students do. Starting with the hoppers and climbers during the first semester, the assignments get more sophisticated. Soon the students are making solar-powered dragsters, water-propelled rockets, and electromagnetic rail guns.
The design experience culminates with the Senior Consulting Program for Engineering, or SCOPE, in which students tackle real engineering problems from companies and other organizations that partner with Olin. “The students are actually acting just like employees of the company would act,” says David Barrett, a professor of mechanical engineering and the director of SCOPE. “It’s great training for when they actually get their first job.”
There’s always been debate on how to train engineers. In the United States, the controversy reached a climax with the “shop versus school” clash. In the late 1800s, most civil, mechanical, and electrical engineers learned their trades in the field or at machine shops. They were all apprentices pursuing not a degree but rather the knowledge needed to do the kinds of projects then in demand. Then, the school culture came as a movement to institutionalize the education of engineers—a vision that eventually prevailed.
Not long after, the school model was taken a step further during World War II. “That was a shift to more research-oriented, graduate school–oriented, science-based engineering education,” says Ronald Kline, a professor of the history of technology at Cornell. U.S. government agencies such as the National Science Foundation and the Department of Defense, he says, pumped billions of dollars in research funding into universities, in effect creating what became known as “engineering science”—the idea that engineers needed a set of basic scientific tools, such as thermodynamics and electromagnetism, with which they could build their practical creations.
During the past couple of decades, opposition to this view has grown increasingly strong. The establishment of Olin has been one of the most momentous events in this shift in thinking, but it is by no means the only one. Project-based learning is being explored at large institutions such as Rensselaer and Oklahoma State and at smaller ones such as Harvey Mudd and Vassar. Purdue and Virginia Tech now have departments of engineering education. And MIT, perhaps the most influential U.S. engineering school, is in the middle of a major review of its undergraduate curriculum.
“I look at Olin and I say, ‘Gee, those guys are doing exactly what I wish we could do,’” says David Mindell, an MIT professor of the history of technology and a member of MIT’s curriculum-review task force. “I guess the jury is still out on what the graduates will end up doing, but I don’t think there’s a whole lot of question that they will be successful in one way or another.”
Says Henri Petroski, professor of civil engineering at Duke University, Durham, N.C., and a celebrated author of books on the philosophy and practice of engineering, “It’s a common misconception that engineering is applied science, in other words, that you know all the math and the science and you almost just look up a formula somewhere and crank out your engineering design. It doesn’t really work that way. Olin seems to recognize that this is getting the cart before the horse, so they are apparently trying to do it the other way. I’ll be very interested to follow them.”
But that’s not to say Olin doesn’t face a number of challenges. “In my opinion, the biggest question mark with Olin is whether they’re able to give their faculty enough time to do the research that keeps them as leaders in their respective fields,” Mindell says. “It’s hard to do without graduate students. It’s hard to do in a sort of college setting.”
In addition, teaching the Olin way also requires major investments in shop space and materials, notes Petroski. Yet he says that it can be done, at both big and small schools, and that the benefits are worth the investment. “I teach a course that is taken by freshmen mostly and some sophomores, and I incorporate design problems,” Petroski says. “Their eyes light up. They begin to realize they don’t have to know a lot. They begin to realize what the design process is. They begin to see how their minds work.”
The best thing about Olin? I asked that question of almost everybody I met during my visits to campus. Answers varied, but in most cases they boiled down to one element: the students.
To get a snapshot of what Olin students are doing, I arrive on an early spring morning to attend the Expo, a three day campuswide science and technology extravaganza in which students present their best work from the semester. Visitors, which that day included representatives from MIT, Intel, BAE Systems, and the design firm Ideo, receive evaluation forms and are encouraged to give feedback to the students.
George Jemmott, a sophomore from California, is presenting a system called “USB: Universal Serial Barista.” It’s a computer-controlled bartender, with four bottles connected to hoses and pumps. “You can have preprogrammed recipes,” he explains, instructing the system to blend two liquids to produce a purple mix. He says he is already designing a new version, with 16 reservoirs, and is applying for a grant from Olin to explore the system’s commercial potential.
Sylvie Boiteau, a smiling sophomore from Massachusetts with pigtails and a colorful striped shirt, tells me she and other students developed a system to help vending-machine owners change products’ prices more easily. Their solution is connecting the machines to the Internet to let owners alter electronic price tags using a Web site. She looks at a screen and fires off multiple mouse clicks to show me how she changes the price of Doritos in a machine connected to their system. “Let’s see by location: on the second floor of the restaurant at Olin. You can see right now it’s 75 cents, and we can change that to 80 cents.”
The work students present at the Expo is not only from classroom projects but also from extracurricular activities, such as hobbies and volunteer service, which Olin explicitly encourages students to pursue. Freshman Sean Calvo, from Washington, D.C., is standing beside a poster titled “Modeling: Not Just for Engineers Anymore.” He’s not talking about modeling and simulation but rather skin care, men’s makeup, and fashion shows. Among the array of samples he’s brought are seaweed purifying toner, a waterproof mascara, and Christian Dior Masque Stretch.
Later in the afternoon, I attend a performance by the Wired Ensemble, Olin’s conductorless orchestra. With the audience sitting in a wide corridor with high glass windows at the Academic Center, the ensemble, playing clarinet, alto and tenor sax, trumpet, viola, and timpani, performs a variety of pieces the students composed. Midway through the concert, one student dressed all in black recites sonnets from Dante’s La Vita Nuova and Inferno. With electrical engineering and music professor Diana Dabby at the piano, the group closes with the “Ebony Concerto” by Stravinsky.
The Expo ends with a big barbecue on the oval lawn, where I meet Gil Gray and Andrew Watchorn, engineers from National Instruments Corp. Holding hot dogs in the late-afternoon sun, they say they were impressed with Olin’s approach to engineering education. “Engineering is sometimes painful,” one says. “Yeah,” the other agrees, “and it should be fun.”
The size of Olin’s campus and of its faculty and student body also makes Olin a unique place. While MIT, for instance, has over 4000 undergraduate students, about half in the school of engineering, plus some 6000 graduate students, Olin has less than 300 undergrads and no grad students. You get a sense of the small community feeling just by walking around; students nod or say hi at you and seem willing to talk to anyone, even a stranger in the cafeteria.
One evening, as I eat my grilled chicken, several students sit next to me, and soon I find myself in the middle of a lively conversation. Topics jump quickly from summer internships to freedom of expression in China to evolution to the pope. “Does the pope speak for God?” one young woman eating apple cake wants to know. A redhead next to her replies, “I thought he was, like, he has the cellphone to God.” The conversation somehow shifts to Harrison Ford, and a woman on the corner of the table says, “He’s on the list of the most sexy!”
Many students told me that the schoolwork demands a lot of time working in teams outside the classroom and that it helps that almost all students live on campus. Last-minute group meeting? How about 11 p.m. in the second-floor lounge? To see if I could catch any of that action, I asked if I could spend a night at the student dormitory. The school puts me in a room normally reserved for high school students visiting the campus. The comfortable room, which would normally accommodate two students, had some sparse furnishings, a generous window, climate control, and a private bathroom.
At around 8 p.m. I leave my room to see what the students are up to. I walk by a lounge with sofas, fireplace, big-screen television, DVD player, and game systems—one of every game console I know of and a few that I don’t. But it turns out I can hardly find anyone around. One tall student in blue pajamas tells me most people are out to see the latest Star Wars installment, which has just hit theaters. I chat with some students, and they say they are packing for the summer break. I go back to my room, and later that night I hear doors slamming and hysterical laughter well past midnight. Some things about the college experience are universal, apparently.
But the school’s small size also has its drawbacks. People learn more than they want to about each other. Dating in such a small circle means scarce options. And competition sometimes runs high in a place with so many bright people, each wanting to take the lead. The students call this isolation the “Olin bubble.” In fact, Olin is not the place for those who want to blend into the crowd. The school looks for adventurous, risk-taking students who show initiative and teamwork skills. And in addition to being academically exceptional, students also have to have a passion, “something they can’t not do,” as Sherra E. Kerns, vice president for innovation and research, puts it.
For the class of 2009, 546 students applied and 177 were invited to candidates’ weekends, when they came to the campus to participate in team activities to get a better idea what Olin is about. After that, 134 were admitted and 77 enrolled. That 24.5 percent acceptance rate puts Olin in a category with, for example, Caltech and Cornell, which accept 20 and 27 percent of applicants, respectively, for all undergraduate majors.
But despite the “Olin bubble” isolation, I get a strong feeling that Olin students are having fun. Are they happier than engineering students at other places? It’s hard to say. At places such as MIT, students often have a love-hate relationship with their school. But that’s not exactly the case at Olin. Says Jessica Townsend, a mechanical engineering professor who got her Ph.D. at MIT: “You still see a little bit of what you may call the MIT attitude, particularly as the semester goes on and finals are coming and everything is starting to wrap up and, wow, it’s craziness.” But she adds: “The relative happiness level of the Olin students—if you ask them, they’re a pretty happy bunch.”
“People here are amazing,” says Mikell Taylor, a senior from Ohio who is a black belt in tae kwon do and who turned down MIT for Olin. “Whatever you think you’re good at, there’s someone who is better than you at it. It’s extremely humbling, but it’s really cool at the same time, because you have access to all these really cool people.”
The hands-on projects, the extracurricular activities, and the well-equipped campus are definitely important factors in the happiness level. But there’s another key element: the faculty. Of Olin’s 32 professors, 22 are younger than 40. Eighteen are men and 14 women. One is a concert pianist; another is a yoga teacher; a third speaks Sinhalese. One looks like Kevin Kline. They come from places as diverse as NASA, Disney, and the National Security Agency. They are energetic, articulate, and attractive. As one student puts it, “Is it just me, or can every professor do stand-up comedy?”
During Olin’s very first semester, a major roadblock paralyzed the school. Perhaps too excited about the idea of project-based classes and interdisciplinary interactions, the faculty underestimated the effort and time that students would need to complete tasks and do the teamwork. One day, about a month after classes had started, a group of students descended on the president’s office and said things were not going well. They complained they had been working until 4 o’clock in the morning for several days and couldn’t stay awake in class anymore. Some were thinking about leaving.
Miller responded by declaring a moratorium on classes. He then talked to the faculty, who talked to the students, and all tried to figure out how much time to devote to different activities. “Let’s recalibrate; let’s relaunch this semester,” Miller recalls saying. And then the school did the sort of thing that makes Olin, well, Olin: it rented a giant inflatable bouncing castle and put it in the middle of the oval. “The kids went on the lawn, just stress relief, and the faculty members were out there, and students could throw eggs at the faculty and all kinds of things,” Miller says. “And we restarted. We got it better next time.”
Professors and students told me Olin got better and is still getting better. And it is also trying to assess how well it is doing. Sherra Kerns says Olin is defining the competencies its graduates should acquire, skills such as leadership and entrepreneurship, and thinking about how to measure such competencies. And even though that study is not yet complete, one early way of measuring Olin’s success will be seeing how students do after they get out of school. Will Olin’s alumni land desirable jobs? Will they be accepted in top graduate programs?
Judging by some of their internships, it seems the answer will be yes. Last summer, the class of seniors that is graduating this month did internships at Boeing, IBM, Lockheed, Motorola, Raytheon, and top university labs. At press time, Curtis was accepted to a Ph.D. program in quantum computing at the University of Oxford, in England; Taylor was waiting to hear from robotics companies and graduate programs; and Ige was working on a company he founded to manufacture meditation chairs.
Meanwhile, lots of folks will be keeping an eye on Olin’s first graduates as they make their way in the world. The NSF has funded a research project by a group of MIT social scientists studying the outcome of innovative engineering programs at Olin and at Vassar, says Susan Kemnitzer, deputy director of engineering education and centers at the NSF. “Everyone is very hopeful and watching closely what Olin is doing,” she says. “We’re still running the experiment, so we don’t have any data yet. But we will. And I think people should take a look at the data.”
That Olin graduates will be successful there’s not much doubt; but whether Olin will accomplish its long-term aspiration of fomenting change at other engineering schools remains an open question. “That’s actually a much bigger measure of our success or failure,” says electrical engineering professor Gill Pratt, a roboticist who came to Olin after 21 years at MIT. “It makes it even more important that we do a really good job. And it’s sometimes scary. There are so many eyes on us.”
To see more photos of Olin’s campus and classes, and also a dictionary of “Olinese” terms like “Things That Go Bang” and “Olin Triangle,” see article, “The Olin Lingo.”
“Educating the Engineer of 2020,” a recent report on engineering education by the National Academy of Engineering, is available at http://fermat.nap.edu/catalog/11338.html.
For more on the history of engineering education, see “The paradox of ‘engineering science’—a cold war debate about education in the U.S.,” by Ronald Kline, in IEEE Technology and Society Magazine (Fall 2000), as well as America by Design, by David F. Noble (Oxford University Press, 1979).
New benchmarks reveal science-task speedups
Japan’s Fugaku supercomputer at the Riken Center for Computational Science in Kobe, Hyogo prefecture photographed in June 2020.
Scientific supercomputing is not immune to the wave of machine learning that’s swept the tech world. Those using supercomputers to uncover the structure of the universe, discover new molecules, and predict the global climate are increasingly using neural networks to do so. And as is long-standing tradition in the field of high-performance computing, it’s all going to be measured down to the last floating-point operation.

Twice a year, Top500.org publishes a ranking of raw computing power using a value called Rmax, derived from benchmark software called Linpack. By that measure, it’s been a bit of a dull year. The ranking of the top nine systems are unchanged from June, with Japan’s Supercomputer Fugaku on top at 442,010 trillion floating point operations per second. That leaves the Fujitsu-built system a bit shy of the long-sought goal of exascale computing—one-thousand trillion 64-bit floating-point operations per second, or exaflops.
But by another measure—one more related to AI—Fugagku and its competitor the Summit supercomputer at Oak Ridge National Laboratory have already passed the exascale mark. That benchmark, called HPL-AI, measures a system’s performance using the lower-precision numbers—16-bits or less—common to neural network computing. Using that yardstick, Fugaku hits 2 exaflops (no change from June 2021) and Summit reaches 1.4 (a 23 percent increase).
By one benchmark, related to AI, Japan’s Fugaku and the U.S.’s Summit supercomputers are already doing exascale computing.
But HPL-AI isn’t really how AI is done in supercomputers today. Enter MLCommons, the industry organization that’s been setting realistic tests for AI systems of all sizes. It released results from version 1.0 of its high-performance computing benchmarks, called MLPerf HPC, this week.
The suite of benchmarks measures the time it takes to train real scientific machine learning models to agreed-on quality targets. Compared to MLPerf HPC version 0.7, basically a warmup round from last year, the best results in version 1.0 showed a 4- to 7-fold improvement. Eight supercomputing centers took part, producing 30 benchmark results.
As in MLPerf’s other benchmarking efforts, there were two divisions: “Closed” submissions all used the same neural network model to ensure a more apples-to-apples comparison; “open” submissions were allowed to modify their models.
The three neural networks trialed were:
In the closed division, there were two ways of testing these networks: Strong scaling allowed participants to use as much of the supercomputer’s resources to achieve the fastest neural network training time. Because it’s not really practical to use an entire supercomputer-worth of CPUs, accelerator chips, and bandwidth resources on a single neural network, strong scaling shows what researchers think the optimal distribution of resources can do. Weak scaling, in contrast, breaks up the entire supercomputer into hundreds of identical versions of the same neural network to figure out what the system’s AI abilities are in total.
Here’s a selection of results:
Argonne National Laboratories used its Theta supercomputer to measure strong scaling for DeepCAM and OpenCatalyst. Using 32 CPUs and 129 Nvidia GPUs, Argonne researchers trained DeepCAM in 32.19 minutes and OpenCatalyst in 256.7 minutes. Argonne says it plans to use the results to develop better AI algorithms for two upcoming systems, Polaris and Aurora.
The Swiss National Supercomputing Centre used Piz Daint to train OpenCatalyst and DeepCAM. In the strong scaling category, Piz Daint trained OpenCatalyst in 753.11 minutes using 256 CPUs and 256 GPUs. It finished DeepCAM in 21.88 minutes using 1024 of each. The center will use the results to inform algorithms for its upcoming Alps supercomputer.
Fujitsu and RIKEN used 512 of Fugaku’s custom-made processors to perform CosmoFlow in 114 minutes. It then used half of the complete system—82,944 processors—to perform the weak scaling benchmark on the same neural network. That meant training 637 instances of CosmoFlow, which it managed to do at an average of 1.29 models per minutes for a total of 495.66 minutes (not quite 8 hours).
Helmholtz AI, a joint effort of Germany’s largest research centers, tested both the JUWELS and HoreKa supercomputers. HoreKa’s best effort was to chug through DeepCAM in 4.36 minutes using 256 CPUs and 512 GPUs. JUWELS did it in as little as 2.56 minutes using 1024 CPUs and 2048 GPUs. For CosmoFlow, its best effort was 16.73 minutes using 512 CPUs and 1024 GPUs. In the weak scaling benchmark JUWELS used 1536 CPUs and 3072 GPUs to plow through DeepCAM at rate of 0.76 models per minute.
Lawrence Berkeley National Laboratory used the Perlmutter supercomputer to conquer CosmoFlow in 8.5 minutes (256 CPUs and 1024 GPUs), DeepCAM in 2.51 minutes (512 CPUs and 2048 GPUs), and OpenCatalyst in 111.86 minutes (128 CPUs and 512 GPUs). It used 1280 CPUs and 5120 GPUs for the weak scaling effort, yielding 0.68 models per minute for CosmoFlow and 2.06 models per minute for DeepCAM.
The (U.S.) National Center for Supercomputing Applications did its benchmarks on the Hardware Accelerated Learning (HAL) system. Using 32 CPUs and 64 GPUs they trained OpenCatalyst in 1021.18 minutes and DeepCAM in 133.91 minutes.
Nvidia, which made the GPUs used in every entry except Riken’s, tested its DGX A100 systems on CosmoFlow (8.04 minutes using 256 CPUs and 1024 GPUs) and DeepCAM (1.67 minutes with 512 CPUs and 2048 GPUs). In weak scaling the system was made up of 1024 CPUs and 4096 GPUs and it plowed through 0.73 CosmoFlow models per minute and 5.27 DeepCAM models per minute.
Psyonic’s prosthesis vibrates to simulate touch
Joanna Goodrich is the assistant editor of The Institute, covering the work and accomplishments of IEEE members and IEEE and technology-related events. She has a master’s degree in health communications from Rutgers University, in New Brunswick, N.J.
Psyonic’s Ability Hand uses vibrations to alert the user when he touches an object as well as indicate how hard he has grabbed it and when he has let go.
On a visit to Pakistan with his parents, 7-year-old Aadeel Akhtar met a girl his age who was missing her right leg. That was the first time he had met a person with a limb difference. The girl’s family could not afford the cost of getting her a prosthetic leg, so she used a tree branch as a crutch to help her walk. From that encounter, Akhtar decided that one day he would develop affordable artificial limbs.
Twenty-one years later, in 2015, the IEEE member founded Psyonic, which designs and builds advanced, affordable artificial limbs. Akhtar is the CEO. The startup, headquartered in Champaign, Ill., released its first product—the Ability Hand—in September. It is the fastest bionic hand on the market and the only one with touch feedback.
The prosthesis uses pressure sensors to mimic the sensation of touch through vibrations. It functions almost like a regular hand. All five fingers on the lightweight prosthesis flex and extend. It offers 32 different grips.
“The most important thing for us is to give people a functioning, robust prosthesis that allows them to do things they never thought they would be able to do again,” Akhtar says.
The Ability Hand is available in the United States for patients age 13 or older.
MAKING PROSTHETIC LIMBS ACCESSIBLE
Akhtar originally wanted to work with people with amputations as a physician. He earned a bachelor’s degree in biology in 2007 from Loyola University in Chicago. But while pursuing his degree, he took a computer science course and fell in love with the subject.
“I loved everything about engineering, programming, and building things,” he says. “I wanted to figure out a way to combine my interests in both engineering and medicine.”
He went on to earn a master’s degree in computer science in 2008, also from Loyola. Two years later he was accepted into the Medical Scholars Program at the University of Illinois at Urbana-Champaign. The program allows students to earn both an M.D. and a Ph.D. in tandem. Akhtar earned an additional master’s degree in electrical and computer engineering and a doctorate in neuroscience in 2016 but has not completed his medical degree.
His research for his doctorate focused on developing what eventually became the Ability Hand.
In 2014 he and another graduate student, Mary Nguyen, partnered with the Range of Motion Project, a nonprofit that provides prosthetic devices to people around the world who can’t afford them. Akhtar and Nguyen flew to Quito, Ecuador, to test their product on Juan Suquillo, who lost his left hand during a 1979 border war between Ecuador and Peru.
“Everything that we do has the patient in mind.”
Using the prototype, Suquillo was able to pinch together his thumb and index finger for the first time in 35 years. He reported that he felt as though a part of him had come back thanks to the prosthesis. After that feedback, Akhtar said, he wanted “everyone to feel the same way that Juan did when using our prosthetic hand.”
Shortly after returning from that trip, Akhtar founded Psyonic. To get some advice about how to run the company and possibly win some money, he entered the bionic hand into the Cozad New Venture Challenge at the University of Illinois. The competition provides mentoring to teams, as well as workshops on topics such as pitching skills and customer development. Psyonic placed first and received a US $10,000 prize. The startup also won a $15,000 Samsung Research innovation prize in 2015. Since then, Psyonic has received funding from the University of Illinois Technology Entrepreneur Center, the iVenture Accelerator, and the U.S. National Science Foundation.
The startup currently has 23 employees including engineers, public health experts, social workers, and doctors.
DEVELOPING THE ABILITY HAND
Psyonic’s artificial hand weighs 500 grams, around the weight of an average adult hand. Most prosthetic hands weigh about 20 percent more, Akhtar says. The Ability Hand contains six motors housed in a carbon fiber casing. It has silicone fingers, a battery pack, and muscle sensors that are placed over the patient’s residual limb. If the patient has an amputation below her elbow, for example, two muscle sensors would be placed over her intact forearm muscle. She would be able to use those sensors to control the hand’s movement and grip.
The Ability Hand is connected by Bluetooth to a smartphone app, which provides users another way to configure and control the hand’s movements. The hand’s software is automatically updated through the app. Its battery recharges in an hour, the company says.
A person in a red shirt and jacket smiling and looking at a prosthetic hand. Akhtar working on the prosthetic handPSYONIC
While talking to patients who used prosthetic hands, Akhtar says, they cited issues such as a lack of sensation and frequent breakage.
To give patients a sense of touch, the Ability Hand contains pressure sensors on the index finger, pinky, and thumb. When a patient touches an item, he will feel vibrations on his skin that mimic the sensation of touch. The prosthesis uses those vibrations to alert the user when he touches an object as well as indicate how hard he has grabbed it and when he has let go.
The reason most prosthetic limbs break, Akhtar says, is because they are made of rigid materials such as plastic, wood, or metal, which can’t bend when they hit a hard surface. Psyonic uses rubber and silicone to make the fingers, which are flexible and can withstand a great deal of force, he says.
ARM WRESTLING WITH A BIONIC HAND!?!?!?! www.youtube.com
To test the durability of the hand, Akhtar arm-wrestled Dan St. Pierre, 2018–2019 U.S. paratriathlon national champion.
The Ability Hand is also water-resistant, Akhtar says.
“Everything we do has the patient in mind,” Akhtar says. “We want to improve the quality of life for people with limb differences as much as possible. Seeing the effect the Ability Hand has already had on people in such a short time span motivates us to keep going.”
Psyonic and its partners are researching how to improve the artificial hand. Akhtar says some of the partners, including the Ryan AbilityLab in Chicago and the University of Pittsburgh, are developing brain and spinal cord implants that could help patients control the prosthesis. The implants could stimulate the areas of the brain that control sensory intake. When a patient touches the prosthesis’s fingers, the implants would send a signal to the brain that would make the patient feel the pressure.
POSITIVE FEEDBACK
Akhtar joined IEEE in 2010 when he was a doctoral student.
He has presented papers on Psyonic’s work at the IEEE/RSJ International Conference on Intelligent Robots and Systems and the IEEE International Conference on Robotics and Automation.
IEEE provides a great “ecosystem,” he says, on prosthetic limbs and robotics, and “it’s amazing to be part of that community.” He adds that having access to IEEE’s community of scholars and professionals, some of whom are pioneers in the field, has helped the company gain important feedback on how it can improve the hand, as well as help in the development of legs in the future.
The Faculty of Engineering at McMaster University in Hamilton, Ont., Canada is aiming to build on its ranking as one of the world’s top engineering schools by expanding its recruitment of both tenure-track and teaching track positions across multiple departments. This broad initiative is expected to continue the growth of McMaster as a leading destination for innovative teaching and research.
To support this growth and further develop McMaster Engineering’s longstanding strengths in research, innovation and graduate training, the positions being offered will include two Tier II Canada Research Chair (CRC) and tenure-track positions, with specialization in the fields of micro-nano technology, smart systems, and bio-innovation.
“The rapid growth in the reputation of the Faculty of Engineering reflects our continuing focus on innovative research designed for impact and educating agile learners to become equipped to tackle our world’s greatest challenges,” says Ishwar K. Puri, McMaster’s dean of engineering.
In addition to successful applicants teaching both undergraduate and graduate level courses, they will also be expected to establish a strong externally-funded research program, supervise graduate students and foster existing or new collaborations with other departments and faculties.
“A range of perspectives leads to better insights and innovation, and our diverse and inclusive community is a key factor in our success. We welcome experts from around the world to be part of this next generation of growth and innovation in the Faculty of Engineering,” adds John Preston, McMaster Engineering’s associate dean, research and external relations.
The strength of McMaster Engineering has been its strong focus on interdisciplinary collaboration and an emphasis on research with impact. This focus on R&D with real-world impact is demonstrated by how its research has scored in the United Nations Sustainable Development Goals in categories such as good health and well-being, quality education, gender equality, and industry, innovation and infrastructure and climate action.
Earlier this year, McMaster ranked 17th in the world in the Times Higher Education Impact Rankings and number one in Canada for good health and well-being and decent work and economic growth. The rankings recognize the important contributions universities make to their communities, countries and on an international scale.
In a combination of both its commitment to impactful research and collaboration, McMaster Engineering has also aimed at providing a supportive and inclusive environment that celebrates big ideas and commercialization while working with industry partners around the world to solve the world’s most pressing challenges.
The Faculty’s mission to push the boundaries of discovery and innovation plays a significant role in helping McMaster University earn its reputation as one of Canada’s most innovative universities.
As Canada’s most research-intensive university, McMaster’s commitment to research continues to be reflected in its rankings. Most recently McMaster was named one of the world’s top 70 universities in the 2021 Times Higher Education rankings. As well, 14 academic disciplines at McMaster Engineering are ranked among the best in Canada by Shanghai Ranking.
Innovation extends to McMaster Engineering’s approach to education. In September 2020 after a two-year pilot, McMaster Engineering formally launched The Pivot, an historic $15 million initiative marking the largest transformation of the school’s curriculum, experiential learning and the classroom experience in the 62-year history of the Faculty.
This year, as part of The Pivot initiative, more than 1,100 first-year engineering students are experiencing the school’s new interactive course called Integrated Cornerstone Design Projects in Engineering. This novel course integrates concepts previously taught in four different courses into a single, seamless, project-based learning experience, allowing students to work in teams, design prototypes and solve real-world problems.
By transforming the engineering curriculum, reimagining the learning environment and amplifying experiential learning, The Pivot takes a project-based and experiential learning approach to developing future-ready graduates with design-thinking and entrepreneurial mindsets.
For more information on current opportunities within the Faculty of Engineering, view the postings here.

source